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Starting from the irreducible representations of the group of the wave vector, we construct the spin-wave
functions consistent with inversion symmetry, neglected in the usual representation analysis. We obtain the
relation between the basis functions of different members of the star of the wave vector. We introduce order
parameters and determine their transformation properties under the operations of the space group of the
paramagnetic crystal. The results are applied to construct terms in the magnetoelectric interaction, which are
quadratic and quartic in the magnetic order parameters. The higher-order magnetoelectric interactions can in
principle induce components of the spontaneous polarization, which are not allowed by the lowest-order
magnetoelectric interaction. We also obtain the relation between the spin-wave functions of the incommensu-
rate phase and those of the commensurate phase, which lead to analogous relations between the order param-
eters of these two phases.
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I. INTRODUCTION

The problem of determining the symmetry of incommen-
surate �IC� magnetic order from diffraction experiments is an
old one and is the subject of several well-known reviews.1,2

The reviews are based on the idea that the spin structure that
develops at a continuous transition must transform like an
irreducible representation �irrep� of the group of operations,
which leaves the IC wave vector q invariant.3 However, per-
haps surprisingly, these standard references do not exploit
additional restrictions that are due to inversion symmetry
when that operation is not a member of the group of the
wave vector. Although the group theoretical formalism for
doing this has been described4,5 and these restrictions had
previously been used to aid in structure determinations,6–9

the effect of inversion symmetry is often not included in the
classification of possible magnetic structures.

Here we perform the requisite analysis for the star of
wave vectors of the IC phases10–12 of the “125” systems,
RMn2O5, where R is a rare earth ion, which may be magnetic
or not �e.g., when R is yttrium�. The interest in these mate-
rials stems from the fact that they exhibit ferroelectricity13–16

whose onset coincides with a magnetic ordering
transition.17–21 We show that when inversion symmetry is
taken into account, there are about half as many degrees of
freedom that describe the basis functions of the irreducible
representations compared to an analysis when inversion sym-
metry is overlooked. Even when an unrestricted fit �not tak-
ing account of any symmetry� is performed,22 it is useful to
have the results of the present paper to see if the hypothesis
of a single irrep23 holds. Thus, it is clear that magnetic struc-
ture determination using an approach that includes inversion
symmetry will lead to an increase in the accuracy of the
structure determinations. Finally, this approach leads natu-
rally to the introduction of order parameters, which have
symmetry properties that we explicitly display and in terms

of which a Landau expansion was developed for a number of
systems6–9 and which has led to a generic magnetoelectric
�ME� phase diagram for the 125’s �Ref. 24�. The purpose of
the present paper is to �a� analyze the symmetry of the vari-
ous IC phases, �b� show how the symmetry implies relations
between order parameters of different symmetry magnetic
phases, and �c� analyze the symmetry of the ME interactions,
which explain the appearance of ferroelectric order at some
of the magnetic phase transitions.

Briefly, this paper is organized as follows: In Sec. II we
list the results obtained using the canned program MODY for
the IC phase and we show how to modify this to take ac-
count of inversion symmetry. Here order parameters are in-
troduced as the complex amplitudes of the spin-wave func-
tions. In Sec. III we show how, having obtained the basis
functions for one member of the star of q, one can determine
the basis functions for all the other wave vectors in the star
of q. Here we also determine how the order parameters trans-
form under all the operations of the space group. Having
determined the symmetry properties of the order parameters,
we are able, in Sec. IV, to construct the lowest-order �trilin-
ear� ME interaction, which explains the orientation of the
observed magnetically induced spontaneous polarization.
Here we show that higher-order and Umklapp ME interac-
tions can lead to small contributions to all components of the
spontaneous polarization. In Sec. V we discuss how the basis
functions in the IC phase with qx�1 /2 connect to those in
the adjacent qx=1 /2 phase. Here we also analyze the sym-
metry of the special multicritical point for which qx=1 /2. In
Sec. VI we briefly summarize the results of this paper.

II. CALCULATION

A. Results without inversion symmetry

The lattice structure of the 125’s was determined by
Quezel-Abrunaz et al.25 to be that of the orthorhombic space
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group Pbam �No. 55 in Ref. 26�. In Table I we list the gen-
eral positions in the primitive unit cell, which defines the
symmetry operations of the space group Pbam, and in Table
II �Refs. 27–29� we give the actual positions of the ions for
the 125 systems.

The magnetic and dielectric phases occurring in the 125’s
are more complicated and we give a brief overview of them
here. In Figs. 1�a� and 1�b� we show the ME phase diagrams
of ErMn2O5 �taken from Ref. 17� and HoMn2O5 �taken from
Ref. 18�, which exhibit the simultaneous ferroelectric and
magnetic phase transitions. When cooled from the paramag-
netic phase, the 125’s develop IC order at about 45 K in a
paraelectric phase described by the wave vectors whose star
consists of q�= ��1 /2−�� ,0 , � �1 /4+��� and their negatives,
where � and � are of order 0.05 or less11,12,17–19,30–33 in re-
ciprocal lattice units �rlus�. Upon further cooling of some
125’s, such as ErMn2O5 �shown in Fig. 1�a��,17,21 YMn2O5
�Refs. 12, 14, 16, and 30�, and TmMn2O5 �Refs. 11 and 34�,
exhibit a ferroelectric �I ,0 ,C� phase in which �=0, before
entering a �C ,0 ,C� phase in which �=�=0. Other 125’s,
such as TbMn2O5 �Refs. 14, 19, and 35�, HoMn2O5 �shown
in Fig. 1�b�� �Refs. 18, 20, 21, and 36�, and DyMn2O5 �Refs.
20, 31, 32, and 36�, go directly from the �I ,0 , I� phase into
the �C ,0 ,C� phase without the appearance of the �I ,0 ,C�
phase. At lower temperature the 125’s follow various sce-
narios in which the magnetic structures may be either IC or
commensurate �CM� with a long period and they may or may
not be ferroelectric. For a review of the properties and Lan-
dau theory for 125’s see Ref. 37.

Here we give a symmetry analysis of the allowed mag-
netic structures in the �I ,0 , I� or �I ,0 ,C� phases. A detailed
symmetry analysis applicable to the phase with qx=1 /2
�Refs. 5 and 9� indicated that this phase was described by a
two dimensional �2D� irrep and therefore could be character-
ized by two complex-valued order parameters9 we will call
�1 and �2. The symmetry of the phase when qx�1 /2 is
different. The group of this wave vector contains unity E and
the glide mac, which leaves the b component of the wave
vector invariant. Thus we have two one dimensional �1D�
irreps, which we label �e and �o �“e” for even and “o” for
odd�. In particular, since the star of the wave vector contains
four vectors, ordering within each irrep is described by four
complex-valued order parameters.24 The allowable wave
functions are the basis functions of the irreps, which trans-
form appropriately. These basis functions are actually eigen-
vectors of mac with eigenvalues +�� �for �e� and −�� �for
�o�, where �=exp�−i�qx�. Since each irrep is contained 18
times in the original reducible representation generated by

the three spin components of the 12 magnetic sites in the unit
cell �here we assume that R is magnetic�, each wave function
contains 18 independent free complex-valued parameters.
These wave functions are listed in Table III �Ref. 38� and
they are in agreement with �i.e., are a reparametrization of�
the results of the MODY program.39

To illustrate the transformation laws, we check that the
vectors in Table III are indeed eigenfunctions of mac. Note
that we use the so-called “unit-cell” Fourier transforms
whereby,40

S�R,n� = S�q,n�e−2�iq.R + c.c., �1�

where n labels the sublattice and R locates the unit cell. A
transformation O takes the “initial” basis function into a “fi-
nal” basis function. If a prime indicates final, i.e., “after
transformation,” then S��R f ,nf� denotes the spin of sublattice
nf in the unit cell at R f after transformation. This quantity is
obtained by applying the transformation to the spin at the

TABLE I. General positions within the unit cell for space group
Pbam expressed as fractions of the orthorhombic lattice constants
�Ref. 26�. This table defines the space group operations on r
= �x ,y ,z�. Here 2	 is a twofold rotation �or screw� about the 	 axis
and m	
 is a mirror �or glide� 	
 plane.

Er��x ,y ,z� 2ar��x+1 /2, ȳ+1 /2, z̄�
2br��x̄+1 /2,y+1 /2, z̄� 2cr��x̄ , ȳ ,z�
Ir��x̄ , ȳ , z̄� mbcr��x̄+1 /2,y+1 /2,z�
macr��x+1 /2, ȳ+1 /2,z� mabr= �x ,y , z̄�

TABLE II. Position �n �in units of lattice constants� of the nth
magnetic ion in the unit cell. �These values are for HoMn2O5 �Refs.
27 and 28�, but are approximately the same for the other 125’s �Ref.
29�.� Sites 1–4 are for Mn3+, 5–8 are for Mn4+, and 9–12 are for
R3+ ions.

�1= �0.09,0.85,1 /2� �2= �0.59,0.65,1 /2�
�3= �0.41,0.35,1 /2� �4= �0.91,0.15,1 /2�
�5= �1 /2,0 ,0.25� �6= �0,1 /2,0.25�
�7= �0,1 /2,0.75� �8= �1 /2,0 ,0.75�
�9= �0.14,0.17,0� �10= �0.64,0.33,0�
�11= �0.36,0.67,0� �12= �0.86,0.83,0�
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FIG. 1. �a� The ME phase diagram of ErMn2O5 �Ref. 17�. Here
�X ,0 ,Z� indicates the nature of the wave vector. If X=C �Z=C�,
then qx=1 /2 �qz=1 /4�. If X= I �Z= I�, then qx �qz� is IC, but close to
1/2 �1/4�. The dashed lines indicate temperatures at which an
anomaly in the b component of the dielectric constant was ob-
served. P �b indicates that the system has a spontaneous polariza-
tion aligned along b �for T�39 K�. �b� Same for HoMn2O5 �Ref.
18�. For T�39 K, qz�1 /4, and for T�20 K, the �I ,0 , I� phase
has qz�1 /4 and the system is either paraelectric or weakly
ferroelectric.
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initial location Ri+ni
. Thus for transformation by mac, we

write,

S��q,nf� = �	S	�q,ni�e2�iq·�Rf−Ri�, �2�

where �	 is the appropriate factor for the mirror operation
mac on the components of a pseudovector: �y =−�x=−�z=1.
We will check that the basis vector of irrep �e is an eigen-
function of mac. Note that under mac when the initial sublat-
tice index is ni=2n−1, then the final sublattice index is nf
=2n and vice versa. Thus,

S	��q,1� = �	S	�q,2�e2�iq·�Rf−Ri� = �	��	s	1e2�iqx = ��s	1

= ��S	�q,1� ,

S	��q,2� = �	S	�q,1�e2�iq·�Rf−Ri� = �	s	1 = �����	s	1�

= ��S	�q,2� ,

S	��q,3� = �	S	�q,4�e2�iq·�Rf−Ri� = �	t	1e2�iqx = ������	t	1�

= ��S	�q,3� ,

S	��q,4� = �	S	�q,3�e2�iq·�Rf−Ri� = ���	t	1 = ��S	�q,4� ,

S	��q,5� = �	S	�q,6�e2�iq·�Rf−Ri� = ���	
2s	2 = ��S	�q,5� ,

S	��q,6� = �	S	�q,5�e2�iq·�Rf−Ri� = �	s	2e2�iqx = ������	s	2�

= ��S	�q,6� ,

S	��q,7� = �	S	�q,8�e2�iq·�Rf−Ri� = �	t	2e2�iqx = ����	��t	2�

= ��S	�q,7� ,

S	��q,8� = �	S	�q,7�e2�iq·�Rf−Ri� = �	���	t	2 = ��t	2

= ��S	�q,8� ,

S	��q,9� = �	S	�q,10�e2�iq·�Rf−Ri� = �	�s	3e2�iqx = ����	s	3�

= ��S	�q,9� ,

S	��q,10� = �	S	�q,9�e2�iq·�Rf−Ri� = �	s	3 = �����	s	3�

= ��S	�q,10� ,

S	��q,11� = �	S	�q,12�e2�iq·�Rf−Ri� = �	t	3e2�iqx = ������	t	3�

= ��S	�q,11� ,

S	��q,12� = �	S	�q,11�e2�iq·�Rf−Ri� = ���	
2 t	3 = ��S	�q,12� .

�3�

Thus ���e� is an eigenvector of mac with eigenvalue ��. In
the other irrep, the fact that � is everywhere replaced by −�
ensures that ���o� is an eigenvector of mac with eigenvalue
−��.

B. Effect of inversion symmetry

Now we modify the above results to take account of in-
version symmetry. A straightforward, if clumsy, way to do
this is to use the fact that the inverse susceptibility matrix
becomes singular at a continuous phase transition, which im-
plies that one of its eigenvalues passes through zero. We
wish to see what restrictions symmetry places on the associ-
ated critical eigenvector. We write the quadratic terms in the
free energy F2 in the form,

F2 =
1

2
�†F� , �4�

where F is the inverse susceptibility matrix. Instead of con-
sidering the quadratic form in the original spin variables, we
consider the quadratic form in terms of the variables of Table
III. So the matrix F is an 18 dimensional Hermitian matrix
operating on an 18-component vector ����, which we write
as �s1 , t1 ,s2 , t2 ,s3 , t3�, where the s’s and t’s are three compo-
nent subvectors taken from Table III. Thus

sn � �sxn,syn,szn� . �5�

Because the paramagnetic phase has symmetry under spatial
inversion I, we must have,6,7,9

F2 =
1

2
�I��†F�I�� =

1

2
�†F� , �6�

for all values of the spin coordinates.
To implement this, we note that for transformation under

I, the result follows a logic similar to that leading to Eq. �2�,
namely,9

S	��q, f�� = S	�q,i�e2�iq·��f+�i�, �7�

where again the prime indicates the value after transforma-
tion by I. Note that inversion relates sites �1,4�, �2,3�, �5,8�,
�6,7�, �9,12�, and �10,11�. Now use Eq. �7� to get

s	1� = t	1
� e−2�i�qx+qz�,

s	2� = t	2
� e−2�i�qx+qz�,

TABLE III. Symmetry-adapted basis functions for wave vector
�Ref. 38� q+= �qx ,0 ,qz�, which transform according to the irreps �e

and �o, where �=exp�−�iqx�. We have not yet included the effect
of inversion symmetry.

���e� ���o�

S�q ,1�= �sx1 ,sy1 ,sz1� �ux1 ,uy1 ,uz1�
S�q ,2�= −��sx1 ,−sy1 ,sz1� ��ux1 ,−ux2 ,uz1�
S�q ,3�= −���tx1 ,−ty1 , tz1� ���vx1 ,−vy1 ,vz1�
S�q ,4�= �tx1 , ty1 , tz1� �vx1 ,vy1 ,vz1�
S�q ,5�= �sx2 ,sy2 ,sz2� �ux2 ,uy2 ,uz2�
S�q ,6�= −���sx2 ,−sy2 ,sz2� ���ux2 ,−uy2 ,uz2�
S�q ,7�= −���tx2 ,−ty2 , tz2� ���vx2 ,−vy2 ,vz2�
S�q ,8�= �tx2 , ty2 , tz2� �vx2 ,vy2 ,vz2�
S�q ,9�= �sx3 ,sy3 ,sz3� �ux3 ,uy3 ,uz3�
S�q ,10�= −��sx3 ,−sy3 ,sz3� ��vx3 ,−vy3 ,uz3�
S�q ,11�= −���tx3 ,−ty3 , tz3� ���vx3 ,−vy3 ,uz3�
S�q ,12�= �tx3 , ty3 , tz3� �vx3 ,vy3 ,vz3�
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s	3� = t	3
� e−2�iqx, �8�

and

t	1� = s	1
� e−2�i�qx+qz�,

t	2� = s	2
� e−2�i�qx+qz�,

t	3� = s	3
� e−2�iqx. �9�

These simple results arise because we reparametrized with an
eye to avoid complexity.

The eigenvalue equation for the 18�18 matrix F can be
represented as

�
A B C D E F

B† G H I J K

C† H† L M N O

D† I† M† P Q R

E† J† N† Q† S T

F† K† O† R† T† U

��
s1

t1

s2

t2

s3

t3

� = ��
s1

t1

s2

t2

s3

t3

� , �10�

where each entry of the matrix is itself a 3�3 submatrix.
Now we identify the symmetry of this matrix imposed by
inversion via Eq. �6�. We have,

Aijsi1
� sj1 = Aij�Isi1���Isj1� = Aijti1tj1

� = Gjitj1
� ti1, �11�

which implies that Aij =Gji, so that G= Ã=A�, since A is
Hermitian. Similarly, P=L� and U=S�. Consider,

Bijsi1
� tj1 = Bij�Isi1���Itj1� = Bijti1sj1

� = Bjisj1
� ti1, �12�

which implies that Bij =Bji. Thus B†=B�. Likewise M†

=M� and T†=T�. Furthermore,

Cijsi1
� sj2 = Cij�Isi1���Isj2� = Cijti1tj2

� = Iji
† tj2

� ti1, �13�

which implies that Iij
� =Cij. Also,

Eijsi1
� sj3 = Eij�Isi1���Isj3� = Eijti1tj3

� �e2�i�qx+qz��e−2�iqx

= �K†� jitj3
� ti1, �14�

which implies that K�=Ee2�iqz. Similarly R�=Ne2�iqz. Also,

Dijsi1
� tj2 = Dij�Isi1���Itj2� = Dijti1sj2

� = �H†� jisj2
� ti1, �15�

so H�=D. Also,

Jijti1
� sj3 = Jij�Iti1���Isj3� = Jijsi1tj3

� �e2�i�qx+qz��e−2�iqz = Fji
† tj3

� si1,

�16�

which implies that F�=Je2�iqz. Similarly O�=Qe2�iqz.
Using all these relations, we see that the matrix F must be

of the form,

�
A B C D E J���

B� A� D� C� J E���

C̃� D̃ L M N Q���

D̃� C̃ M� L� Q N���

Ẽ� J̃� Ñ� Q̃� S T

J̃� Ẽ� Q̃� Ñ� T� S�

� , �17�

where �=exp�2�iqz�. Now consider this matrix operating on
a vector of the form,

� = ��,��,�,��,�,���� . �18�

One can show that F� is a vector of the same form as �.
This means that any eigenvector can be taken to be of this
form and the eigenvalue equations are

E†� + J†�� + N†� + Q†�� + S� + T��� = �� ,

C†� + D̃�� + L� + M�� + N� + Q��� = �� ,

A� + B�� + C� + D�� + E� + J��� = �� . �19�

�The other three equations are the complex conjugates of
these.� These give rise to 18 simultaneous equations for the
real and imaginary parts of the three component vectors �,
�, and �.

The point is that the permissible form for an 18-
component eigenvector is restricted by inversion symmetry.
The critical eigenvector is the one whose eigenvalue first
passes through zero as the temperature is lowered. As the
temperature is further lowered, we may have a small amount
of admixing of noncritical eigenvectors into the critical ei-
genvector due to higher-than-quadratic terms in the free en-
ergy. However, these admixtures will only be within the
same irrep unless one crosses a phase boundary.

Since the eigenvalue problem is in a complex vector
space, we write critical eigenvector as

� = ei���,��,�,��,�,���� , �20�

where the phase � is arbitrary �as far as the quadratic terms
are concerned� and the other Greek letters are three compo-
nent vectors. In Tables IV and V we tabulate the results. In
so doing we have introduced the complex-valued order pa-
rameters ����, such that

���� = 	����	ei����. �21�

To avoid overparametrizing, we specify the normalization,

4 

	=x,y,z



n=1,2,3

	s	n	2 = 1. �22�

Including inversion symmetry, we have nine complex-valued
s parameters and one complex-valued order parameter
�e�q+�, so that we have 19 real valued parameters �taking
account of the normalization of the s’s�, whereas without
taking account of inversion symmetry, we would have had 36
real valued parameters to determine from a fit to diffraction
data.
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One may notice that we could have said that the 18-
component eigenvector of s’s was of the form,

� = ei���,− ��,�,− ��,�,− ���� , �23�

and indeed the eigenvector is equivalent to this form because
if you multiply the previous eigenvector � by i, it will be
exactly of the form of �.

The comparison with Ni3V2O8 �Refs. 6, 8, and 9� �NVO�
and TbMnO3 �Refs. 7 and 9� �TMO� is significant. In the
case of NVO the magnetic Ni sites are of two types, spine
and cross tie.8 All sites of the same type are related to one
another by a symmetry operation which leaves the wave vec-
tor invariant. It happens that the Wyckoff orbit of this set of
operators generates the entire set of spine sites and also sepa-
rately the entire set of cross-tie sites. In that case inversion

�which does not leave the wave vector invariant� fixes all the
relative phases.6,8,9 �The phases are not necessarily the same,
but they are fixed.� In the case of TMO the Mn sites form a
Wyckoff orbit of the symmetry operations that leave the
wave vector invariant, but the Tb sites break into two orbits.
In this case inversion fixes the relative phases within the Mn
orbit and within a single Tb orbit. Inversion connects the two
Tb orbits. As a result the amplitudes of the two Tb orbits are
fixed to be the same and they have phases, which are the
negatives of one another, but the magnitude of this phase is
arbitrary.7,9 Here the Mn3+, Mn4+, and RE sites each break up
into two orbits, which are interconnected by inversion. So it
is not surprising that this situation is like that of the Tb sites
in TMO: the magnitudes of the two related orbits, which
according to MODY were unrelated, are now, by virtue of
inversion symmetry, fixed to be the same.

III. DISCUSSION

A. Order parameters

It is natural to introduce order parameters because as the
temperature is reduced into the ordered phase, the critical
eigenvector is nearly temperature-independent except for a
change in its normalization, governed by the magnitude of
the order parameter. Furthermore, the phase of the complex
order parameter is either a free variable or, if it is fixed, it is
only fixed by subtle effects of higher-than-quadratic terms in
the free energy. So the order parameter describes properly
the low-energy sector of the free energy.

Note that our definition of the order parameter is such that
if one is given the spin-wave function over all the sublattices
it is possible to uniquely determine both the phase and the
magnitude of the order parameter, except that it could be
multiplied by −1. �But that indeterminacy is inherent for this
order-parameter symmetry.� To make this unique identifica-
tion from a knowledge of the wave functions, the wave func-
tions must be first put into the canonical form of Tables IV
and V. In so doing, the normalization condition has to be
obeyed. Then the prefactor will be the desired order param-
eter. Note that the phase is fixed by having the first and
fourth components written in terms of complex conjugates.
This type of identification would not be possible for a one-
component complex variable.

It should be noted that the order parameter inherits the
symmetry of the full wave function. Having the basis func-
tions for38 q+��qx ,0 ,qz�, we now obtain the basis functions
for the other wave vectors in the star of q. We first obtain the
basis functions for −q−= �−qx ,0 ,qz� for irrep �e. The most
general basis function for irrep �e for this wave vector will
be of the form of Table IV with qx replaced by −qx, i.e., with
� replaced by �� and, for notational convenience, s	,n re-
placed by t	,n, However, this is not the basis function we
want. We want the particular basis function, which is ob-
tained from that of q+ by a symmetry operation—which
takes q+= �qx ,0 ,qz� into −q−= �−qx ,0 ,qz� �Ref. 41� because
it is this basis function that results from the actual interaction
between spins. In other words, we want to relate t	,n to s	,n.
To do this, we now study the transformation of the spin
Fourier transforms.

TABLE IV. Symmetry-adapted spin-wave functions for wave
vector q+��qx ,0 ,qz�, which transform according to the irrep �e,
where �=exp�−�iqx�, �=exp�2�iqz�, and �e is the complex-valued
order parameter. We require the normalization of Eq. �22�. Other-
wise, all constants assume arbitrary complex values. Here we in-
clude the effect of inversion symmetry.

���e�

S�q ,1�= �e�q+��sx1 ,sy1 ,sz1�
S�q ,2�= −�e�q+���sx1 ,−sy1 ,sz1�
S�q ,3�= −�e�q+����sx1

� ,−sy1
� ,sz1

� �
S�q ,4�= �e�q+��sx1

� ,sy1
� ,sz1

� �
S�q ,5�= �e�q+��sx2 ,sy2 ,sz2�
S�q ,6�= −�e�q+����sx2 ,−sy2 ,sz2�
S�q ,7�= −�e�q+����sx2

� ,−sy2
� ,sz2

� �
S�q ,8�= �e�q+��sx2

� ,sy2
� ,sz2

� �
S�q ,9�= �e�q+��sx3 ,sy3 ,sz3�
S�q ,10�= −�e�q+���sx3 ,−sy3 ,sz3�
S�q ,11�= −�e�q+�����sx3

� ,−sy3
� ,sz3

� �
S�q ,12�= �e�q+���sx3

� ,sy3
� ,sz3

� �

TABLE V. As Table IV, but for the irrep �o and we require the
normalization of Eq. �22� with s replaced by u.

���o�

S�q ,1�= �o�q+��ux1 ,uy1 ,uz1�
S�q ,2�= �o�q+���ux1 ,−ux2 ,uz1�
S�q ,3�= �o�q+����ux1

� ,−uy1
� ,uz1

� �
S�q ,4�= �o�q+��ux1

� ,uy1
� ,uz1

� �
S�q ,5�= �o�q+��ux2 ,uy2 ,uz2�
S�q ,6�= �o�q+����ux2 ,−uy2 ,uz2�
S�q ,7�= �o�q+����ux2

� ,−uy2
� ,uz2

� �
S�q ,8�= �o�q+��ux2

� ,uy2
� ,uz2

� �
S�q ,9�= �o�q+��ux3 ,uy3 ,uz3�
S�q ,10�= �o�q+���ux3 ,−uy3 ,uz3�
S�q ,11�= �o�q+�����ux3

� ,−uy3
� ,uz3

� �
S�q ,12�= �o�q+���ux3

� ,uy3
� ,uz3

� �
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We first consider transformation by 2c, which takes q
= �qx ,0 ,qz� into q�= �−qx ,0 ,qz�=−q−, where here and below
we use a prime to indicate a quantity after transformation.
We have that

S	��R f,1� = �	S	�Ri,4� , �24�

where �x=�y =−�z=−1. We now write this in terms of Fou-
rier components using Eq. �1�. The initial position is ri

= �X ,Y ,Z�+�4 and the final position is r f = �X̄−1, Ȳ −1,Z�
+�1, which gives �with �=�e�−q�=�e�q−�� and �=�e�q+��

��t	1e−2�i��−qx,0,qz�·�−X−1,−Y−1,Z�� = �	�s	1
� e−2�i��qx,0,qz�·�X,Y,Z��.

�25�

So with exp�−2�iqx�=�2, we have

���2t	1 = �	�s	1
� . �26�

Similarly,

S	��R f,4� = �	S	�Ri,1� , �27�

with ri= �X ,Y ,Z�+�1 and r f = �X̄−1, Ȳ −1,Z�+�4, which
gives,

��t	1
� e−2�i��−qx,0,qz�·�−X−1,−Y−1,Z�� = �	�s	1e−2�i��qx,0,qz�·�X,Y,Z��,

�28�

so that

���2t	1
� = �	�s	1. �29�

Similarly,

S	��R f,5� = �	S	�Ri,5� , �30�

with ri= �X ,Y ,Z�+�5, r f = �X̄−1, Ȳ ,Z�+�5, which is

��t	2e−2�i��−qx,0,qz�·�−X−1,−Y,Z�� = �	�s	2e−2�i��qx,0,qz�·�X,Y,Z��,

�31�

so that

���2t	2 = �	�s	2. �32�

Similarly,

S	��R f,7� = �	S	�Ri,7� , �33�

with ri= �X ,Y ,Z�+�7 and r f = �X̄ , Ȳ −1,Z�+�7. In using Table
IV we must replace � by �� to convert the table for the wave
vector q�. Thus Eq. �33� yields

��	��t	2
� e−2�i��−qx,0,qz�·�−X,−Y−1,Z��

= �	�	���s	2
� e−2�i��qx,0,qz�·�X,Y,Z��, �34�

so that

���2t	2
� = �	�s	2

� . �35�

Similarly,

S	��R f,9� = �	S	�Ri,12� , �36�

with ri= �X ,Y ,Z�+�12, r f = �X̄−1, Ȳ −1,Z�+�9, which gives

��t	3e−2�i��−qx,0,qz�·�−X−1,−Y−1,Z�� = �	��s	3
� e−2�i��qx,0,qz�·�X,Y,Z��,

�37�

so that

���2t	3 = �	��s	3
� . �38�

Similarly,

S	��R f,12� = �	S	�Ri,9� , �39�

with ri= �X ,Y ,Z�+�9, r f = �X̄−1, Ȳ −1,Z�+�12, which gives

���t	3
� e−2�i��−qx,0,qz�·�−X−1,−Y−1,Z�� = �	�s	3e−2�i��qx,0,qz�·�X,Y,Z��,

�40�

so that

���2�t	3
� = �	��s	3. �41�

Equations �26�, �29�, �32�, �35�, �38�, and �41� yield

t	1 = �	s	1
� , t	2 = �	s	2, t	3 = ��	s	3

� , �42�

and

�� = ��2� . �43�

There is an equivalent solution in which all the transformed
quantities are multiplied by −1. This ambiguity is unavoid-
able because it is inherent in the symmetry of the order pa-
rameter. Using Eq. �42� and the fact that the basis functions
for −q are the complex conjugates of those for q, we obtain
the results of Table VI. The relations for the basis functions
of irrep �o are the same as for �e, so Table VI also applies
for �o.

We now obtain the transformation properties of the order
parameter under all the symmetry operations of the space
group �except translations�. For this discussion it is conve-
nient to introduce an order-parameter vector v whose com-
ponents are the various order parameters:

v1 = �e�q+�, v2 = �e�q−�, v3 = �o�q+� ,

v4 = �o�q−�, v5 = �e�− q+�, v6 = �e�− q−� ,

v7 = �o�− q+�, v8 = �o�− q−� . �44�

The transformation properties of the vector v are given in
Table VII whose construction we now discuss. The row of

TABLE VI. Amplitudes of the basis functions for the irrep �e

for the star of q, where �	= �−1,−1,1�. Here we give the basis
functions for sublattices 1, 5, and 9. The remaining amplitudes are
found by the appropriate modification of Table IV for the wave
vector in question. For the irrep �o, replace all the ss by us and the
remaining amplitudes are found by the appropriate modification of
Table V for the wave vector in question.

q+= �qx ,0 ,qz� s	1 s	2 s	3

−q−= �−qx ,0 ,qz� �	s	1
� �	s	2 ��	s	3

�

q−= �qx ,0 ,−qz� �	s	1 �	s	2
� ���	s	3

−q+= �−qx ,0 ,−qz� s	1
� s	2

� s	3
�
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mac is obtained by using the fact that the basis vector of irrep
�e for wave vector q= �qx ,0 ,qz� is an eigenvector of mac
with eigenvalue ��. The eigenvalue for irreps �e and �o have
opposite signs and changing the sign of the wave vector
leads to complex conjugation of the eigenvalue.

We consider next the effect of 2c on the order parameters.
In Eq. �43� we found that under 2c the new value of v6 is
��2v1. Since the prefactor ��2 does not depend on qz and it
was obtained without specifying the irrep, we see that the
prefactors in the last four columns of the second row are the
same. The prefactors of the first four entries of this row are
obtained from the last four entries by complex conjugation.

Next we consider the effect of inversion on the order pa-
rameters. This discussion is simplified by having in hand the
results of Table VI. Note that I does not change the orienta-
tion of the spin, because spin is a pseudovector. So under I
we have

S	��R f,1� = S	�Ri,4� , �45�

where ri= �X ,Y ,Z�+�4 and r f = �X̄−1, Ȳ −1, Z̄−1�+�1, which
gives �with �=�e�−q� and �=�e�q��,

��s	1� e−2�i��−qx,0,−qz�·�−X−1,−Y−1,−Z−1��

+ ���s	1��e2�i��−qx,0,−qz�·�−X−1,−Y−1,−Z−1��

= �s	1
� e−2�i��qx,0,qz�·�X,Y,Z�� + ��s	1e2�i��qx,0,qz�·�X,Y,Z��.

�46�

This has to be an equality for all integer X, Y, and Z. Also
s	1� =s	1

� �from Table VI�, so we find that

���2�� = � . �47�

Thus ��2�v1 is the entry under v5 in the third row. Having
this result, one can construct the other entries in this row by
noting the dependence on qx and qz.

The other rows of Table VII are found by using the mul-
tiplicative properties,

mab = 2cI, 2a = macmab,

mbc = 2aI, 2b = macI . �48�

IV. MAGNETOELECTRIC INTERACTION

Now we discuss the form of the ME coupling in the
phases with qx�1 /2, i.e., in the �I ,0 , I� and �I ,0 ,C� phases.
In the first subsection we will discuss the trilinear ME inter-
action which involves the lowest number �two� of magnetic
order parameters. In succeeding subsections we will discuss
higher-order ME interactions which involve a product of four
magnetic order parameters. These higher-order terms yield
components of the spontaneous polarization, which are al-
lowed by symmetry but are not present in the trilinear inter-
action. However, these higher-order terms are probably small
for two reasons. First, in the IC phases, which occur at high
temperatures near the paramagnetic phase, the order param-
eters are small. Second, most microscopic models of the ME
interaction30,42–45 treat �within lowest-order perturbation
theory� a trilinear Hamiltonian involving two spin variables
and one displacement variable. However, to obtain higher-
order phenomenological interactions probably involves pro-
cesses of higher order in some small parameter such as t /U
or � /U, where t is a hopping matrix element, � is the spin-
orbit constant, and U is a Coulomb interaction.

A. Trilinear ME coupling

Initially we will consider the lowest-order �trilinear� ME
coupling. We start by considering the case when only the
wave vectors �q+� � �1 /2−� ,0 ,1 /4+��, where � may or
may not be zero, are involved. The interaction of lowest
order in the magnetic order parameters, which conserves
wave vector and is time-reversal invariant is of the form,6,7,9

Vint = 

�a,b

c�ab�a�q+��b�− q+�P�, �49�

where a and b assume the values e and o, P is the spontane-
ous electric polarization and � labels the component.46 Using
Table VII, one sees that terms in Vint with a=b are not al-
lowed by inversion invariance. If one has only a single irrep
present, then one can always redefine the location of the
origin so as to have inversion symmetry with respect to that
new origin and hence such a phase cannot exhibit magneti-
cally induced ferroelectricity. If both irreps are present, then
we write,

TABLE VII. The first column gives the operation O and the column headed vn gives the result of Ovn, where v is given in Eq. �44�. The
last column gives the eigenvalue of dVint /dPb in Eq. �53� under the operation O.

O v1 v2 v3 v4 v5 v6 v7 v8 dVint /dPb

mac ��v1 ��v2 −��v3 −��v4 �v5 �v6 −�v7 −�v8 −1

2c �2v6 �2v5 �2v8 �2v7 ��2v2 ��2v1 ��2v4 ��2v3 −1

I �2��v5 �2�v6 �2��v7 �2�v8 ��2�v1 ��2��v2 ��2�v3 ��2��v4 −1

mbc �v6 �v5 −�v8 −�v7 ��v2 ��v1 −��v4 −��v3 +1

2a ����v2 ���v1 −����v4 −���v3 ��v6 ���v5 −��v8 −���v7 −1

mab ��v2 �v1 ��v4 �v3 �v6 ��v5 �v8 ��v7 +1

2b ���v5 ��v6 −���v7 −��v8 ���v1 ����v2 −���v3 −����v4 +1
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Vint = 

�

�c��e�q+��o�− q+� + c�
��e�− q+��o�q+��P�,

�50�

and inversion invariance forces c� to be pure imaginary: c�

= ir�, where r� is real. Then,

Vint = i

�

r���e�q+��o�q+�� − �e�q+���o�q+��P�. �51�

From Table VII one sees that the square bracket in this equa-
tion changes sign under mac, so P� must also change sign
under mac in order for Vint to be invariant under mac. Thus c�

can be nonzero only for �=b, as is observed. If we set
���q+�= 	���q+�	exp�i���, then we have the result,

Vint = 2r sin��o − �e�Pb	�e�q+��o�q+�	 . �52�

However, this is not the whole story because we must
include the terms involving the other wave vectors in the star
of q. �Indeed it is possible that in the highest temperature
paraelectric IC phase there is a simultaneous condensation of
the order parameters of both wave vectors q� �Ref. 24�.�
Since we have already incorporated the effect of I and mac,
it only remains to use 2c to obtain the other terms which
make up the invariant interaction. To do that we use the
results given in Table VII, which give 2c�n�q+�=�2�n�q−��,
for n=o or e, and, of course, 2cPb=−Pb. Thereby we obtain
the complete result for Vint;

Vint = ir 

�=�

��e�q���o�q��� − �e�q����o�q���Pb. �53�

At this order one needs the simultaneous presence of both
the e and o irreps to have ferroelectricity. �However, below
we find that a polarization along c can be induced by Um-
klapp ME interactions by a single irrep. But this scenario is
unlikely.24� Note that from this interaction the spontaneous
polarization P is aligned along the b axis irrespective of
which wave vector condenses. However, the sign of P de-
pends on how the signs of the order parameters are chosen
�i.e. how symmetry is broken� when �o and/or �e order. Fur-
thermore, within the trilinear ME interaction, even if two
irreps are present, if they are in phase �i.e. if ��o−�e� /� is
an integer�, then a spontaneous polarization does not arise.6,9

When cooling from the paramagnetic phase into the �I ,0 , I�
phase, one expects only a single irrep.23 Upon further cool-
ing, systems that follow the scenario of Fig. 1�a� condense a
second irrep and thereby24 induce ferroelectricity. When we
have both irreps of the wave vector present, their relative
phase ����e�−���o�� /� is usually fixed by fourth-order
terms in the magnetic free energy to be nonintegral,9,24 in
which case no choice of origin will simultaneously make
both irreps inversion invariant. This situation is reminiscent
of TMO �Ref. 7� or NVO �Ref. 6� and was previously noted
in connection with second harmonic generation.47 Finally,
from Eq. �53� one sees that even when two irreps are present,
if the order parameters of the two wave vectors q+ and q−
have the same magnitude, the spontaneous polarization could
vanish. �This probably corresponds to the spirals of the two
wave vectors having opposite helicity.48�

B. Higher-order ME coupling

Sergienko et al.49 have pointed out the existence of
higher-order terms in the ME coupling, in particular terms
quartic in the order parameters. As they indicate, these terms
have the potential to induce a spontaneous polarization in
direction�s� different from those of the trilinear ME coupling.
For the so-called 113 compounds �such as HoMnO3, which
they consider�, these terms usually do not come into play in
view of the anisotropy of the terms in the purely magnetic
free energy, which are quartic in the order parameters. �See
citation 28 of Ref. 24.� Here the situation is different: the
quartic order-parameter anisotropy is much more compli-
cated for the 125’s, so that these higher-order ME terms may
come into play, although, as mentioned, their effect may be
small. We start by first considering terms, which strictly con-
serve wave vector. Later, we will investigate the correspond-
ing Umklapp terms, which only conserve wave vector to
within a nonzero reciprocal lattice vector.

To construct this ME interaction, we need to construct
quartic terms in the order parameters, which transform like a
vector. To avoid complications, it is simplest to use the fol-
lowing approach suggested by Mukamel.50 The idea is to
first find the number of such vector representations by using
the character tables to determine how many times each vec-
tor irrep is contained in the reducible representation formed
by the basis functions of all fourth-order terms. The 34
fourth-order terms are the nine distinct terms of the form,

�k�q+��l�q+��m�q+���n�q+��, �54�

the nine distinct terms of the form,

�k�q−��l�q−��m�q−���n�q−��, �55�

and the 16 terms of the form.

�k�q+��l�q−��m�q+���n�q−��, �56�

where k, l, m, and n assume the values o and e. The character
table for the irreps of the point group of Pbam and that for
the representation � generated by the quartic terms are given
in Table VIII. The characters of the representation � for each
operator are obtained by taking the trace of the operator in
the 34 dimensional vector space under consideration.

Then, we find the number of times n��	� that �	 is con-
tained in � is given by the scalar products of the character
vectors given in Table VIII as51

n��x� = �34 − 4 + 2 + 4 − 10 + 4 − 10 − 4�/8 = 2,

n��y� = �34 + 4 − 2 + 4 − 10 − 4 + 10 − 4�/8 = 4,

n��z� = �34 + 4 + 2 − 4 − 10 − 4 − 10 + 4�/8 = 2. �57�

We find the two x-like functions to be

�x,1 = v3
2v5

2 + v4
2v6

2 − v2
2v8

2 − v1
2v7

2

= ��o�q+��e�q+���2 + ��o�q−��e�q−���2

− ��e�q−��o�q−���2 − ��e�q+��o�q+���2,
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�x,2 = v3v4v5v6 − v1v2v7v8 = �o�q+��o�q−��e�q+���e�q−��

− �e�q+��e�q−��o�q+���o�q−��. �58�

The above are easy to check, at least apart from the complex
phase factors, which always combine to give unity. To be
invariant under mac, we must have an even number of o’s
and an even number of e’s. Note that to be odd under I, the
form must be odd under complex conjugation. To be even
under mab, the form must be even under interchange of q+
and q−.

We find the four y-like functions to be

�y,1 = v1v3v5
2 + v2v4v6

2 − v2
2v6v8 − v1

2v5v7

= 	�e�q+�	2��o�q+��e�q+�� − �o�q+���e�q+��

+ 	�e�q−�	2��o�q−��e�q−�� − �o�q−���e�q−�� ,

�y,2 = v3
2v5v7 + v4

2v6v8 − v2v4v8
2 − v1v3v7

2

= 	�o�q+�	2��o�q+��e�q+�� − �o�q+���e�q+��

+ 	�o�q−�	2��o�q−��e�q−�� − �o�q−���e�q−�� ,

�y,3 = v1v5�v4v6 − v8v2� + v2v6�v3v5 − v1v7�

= 	�e�q+�	2��o�q−��e�q−�� − �o�q−���e�q−��

+ 	�e�q−�	2��o�q+��e�q+�� − �o�q+���e�q+�� ,

�y,4 = v4v8�v1v7 − v3v5� + v3v7�v2v8 − v4v6�

= 	�o�q−�	2��e�q+��o�q+�� − �o�q+��e�q+���

+ 	�o�q+�	2��e�q−��o�q−�� − �o�q−��e�q−��� .

�59�

These can be checked similarly. To be odd under mac the e’s
and the o’s must both appear an odd number of times.

We find the two z-like functions to be

�z,1 = v3
2v5

2 − v4
2v6

2 + v2
2v8

2 − v1
2v7

2

= ��o�q+��e�q+���2 − ��o�q−��e�q−���2

+ ��e�q−��o�q−���2 − ��e�q+��o�q+���2,

�z,2 = v2v3v5v8 − v1v4v6v7 = �e�q−��o�q+��e�q+���o�q−��

− �e�q−���o�q+���e�q+��o�q−� . �60�

These can be checked similarly. To be odd under mab, the
form must be odd under interchange of q+ and q−.

The ME interaction of order �4 is written as

VME
�4� = 


n,�
cn,���,nP�, �61�

where the cn,� are unknown coefficients. Now we discuss
how VME

�4� affects the ME phase diagrams. First of all, if there
is only a single irrep, either an e or an o, then this interaction
vanishes. So in the �I ,0 , I� phase, which has only a single
irrep,23 we still have no spontaneous polarization. As men-
tioned in the introduction to this section, this higher-order
ME interaction may be small and difficult to observe.

C. Umklapp ME interactions

Now we consider Umklapp terms relevant to the phase, in
which qz=1 /4 but qx�1 /2. Here the reducible representa-
tion �U is generated by the nine terms of the form,

�k�q+��l�q+��m�q−���n�q−���4qz,1
, �62�

and the nine terms of the form,

�k�q−��l�q−��m�q+���n�q+���4qz,1
. �63�

The characters for �U are given in Table VIII. Then, we find
the number of times n��	� that �	 is contained in �U to be51

n��x� = �18 − 6 + 2 + 0 − 0 + 0 − 0 − 6�/8 = 1,

n��y� = �18 + 6 − 2 + 0 − 0 − 0 + 0 − 6�/8 = 2,

n��z� = �18 + 6 + 2 − 0 − 0 − 0 − 0 + 6�/8 = 4. �64�

We find the x-like function to be

TABLE VIII. Character table for the point group for the 125’s. �	, where 	=x ,y ,z are vector irreps. The
next to last row gives the characters of the 34-dimensional reducible representation � and the last row gives
those of the 18-dimensional reducible representation, �U.

E mbc mac mab I 2a 2b 2c

�1 1 1 1 1 1 1 1 1

�x 1 −1 1 1 −1 1 −1 −1

�y 1 1 −1 1 −1 −1 1 −1

�z 1 1 1 −1 −1 −1 −1 1

�yz 1 1 −1 −1 1 1 −1 −1

�xz 1 −1 1 −1 1 −1 1 −1

�xy 1 −1 −1 1 1 −1 −1 1

�xyz 1 −1 −1 −1 −1 1 1 1

� 34 4 2 4 10 4 10 4

�U 18 6 2 0 0 0 0 6

EFFECT OF INVERSION SYMMETRY ON THE… PHYSICAL REVIEW B 78, 014407 �2008�

014407-9



�x,1 = v3
2v6

2 + v4
2v5

2 − v2
2v7

2 − v1
2v8

2 = ��o�q+��e�q−���2

+ ��o�q−��e�q+���2 − ��e�q−��o�q+���2

− ��e�q+��o�q−���2, �65�

the two y-like functions to be

�y,1 = v1v3v6
2 + v2v4v5

2 − v2
2v5v7 − v1

2v6v8

= �e�q+��e�q−����o�q+��e�q−�� − �e�q+��o�q−���

+ �e�q−��e�q+����o�q−��e�q+�� − �e�q−��o�q+��� ,

�y,2 = v3
2v6v8 + v4

2v5v7 − v2v4v7
2 − v1v3v8

2

= �o�q+��o�q−����o�q+��e�q−�� − �o�q−���e�q+��

+ �o�q−��o�q+����o�q−��e�q+�� − �o�q+���e�q−�� ,

�66�

and the four z-like functions to be

�z,1 = v1
2v6

2 − v2
2v5

2 = ��e�q+��e�q−���2 − ��e�q−��e�q+���2,

�z,2 = v3
2v8

2 − v4
2v7

2 = ��o�q+��o�q−���2 − ��o�q−��o�q+���2,

�z,3 = v1v3v6v8 − v2v4v5v7 = �e�q+��o�q+��e�q−���o�q−��

− �e�q−��o�q−��e�q+���o�q+��,

�z,4 = v3
2v6

2 − v2
2v7

2 − v1
2v8

2 + v4
2v5

2 = ��o�q+��e�q−���2

− ��e�q−��o�q+���2 + ��e�q+��o�q−���2

− ��o�q−��e�q+���2. �67�

The transformation properties of the �	,n can be checked just
as we did for the �	,n. The Umklapp ME interaction of order
�4 is written as

VME,U
�4� = �4qz,1


n,�
cn,�� ��,nP�, �68�

where the cn,�� are unknown coefficients.
Clearly this interaction is only operative when qz is locked

to the CM value qz=1 /4. This is therefore a generalization of
the term introduced by Betouras et al.,52 but here we give the
first analysis of the symmetry of this interaction. It is inter-
esting to note that this interaction can induce a spontaneous
polarization along the z axis even when only a single irrep is
present. �Inspection of �z,1 and �z,2 indicates that this re-
quires simultaneous condensation of order at wave vectors
q�.� However, as mentioned in the introduction to this sec-
tion, this higher-order ME interactions may be small and
difficult to observe.

V. COMPATIBILITY RELATIONS

A first step to constructing a generic phase diagram for the
125’s �Ref. 24� is to understand how the wave functions
behave near the phase transition between the phase with qx
�1 /2 and that for which qx=1 /2. In Fig. 2 we show a sim-
plified version of this phase diagram for fixed qz. �However,
to compare with experiment, the diagram for fixed qx is more

relevant.24� To avoid confusion, we introduce a control pa-
rameter P such that when P=Pc the wave vector, which
minimizes the inverse susceptibility near the ordering transi-
tion, has qx=1 /2, but when P deviates slightly from this
critical value the x component of the selected wave vector is
not exactly equal to 1 /2. �We refer to the point P=Pc as “the
multicritical point” because to reach this point requires not
only fixing the temperature to be at the ordering transition,
but also, as shown in Fig. 2, one must fix P=Pc by varying
some other parameter, such as the pressure.� As we have
seen, as the temperature is lowered into the ordered phase
when P�Pc, one of the 1D irreps �e or �o at qx�1 /2 con-
denses, whereas exactly at P=Pc one condenses into a phase
with qx=1 /2, which has only a single 2D irrep.9,33 Accord-
ingly, we now study the compatibility relation, which must
relate the wave functions of these two phases in the limit as
we approach the multicritical point M for which P=Pc. Ex-
perimentally, the phase transition between the phase with
qx=1 /2 and that having qx�1 /2 has only been observed for
qz=1 /4. However, since the symmetry of the phases for qz
=1 /4 is not different from that for qz�1 /4, we will leave qz
as a free parameter, which we consider to be incommensu-
rate. Although the actual phase transition between the qz
=1 /2 phase and the phase with qz�1 /2 must be discontinu-
ous, the discontinuity vanishes in the limit when the multi-
critical point M in Fig. 2 is approached. In this limit, one
may consider the transition to be continuous, and therefore it
must be possible to express each basis function of the two
irreps of the qx�1 /2 phase as a linear combination of the
basis functions of the 2D irrep of the phase having qx=1 /2.
We do this explicitly in order to find the relation between the
order parameters of the two phases. This relation will be
perturbatively modified as one goes deeper into the ordered
phase.

A. Wave functions near the multicritical point

In Table IX we record the wave functions allowed by
symmetry for the qx=1 /2 state, based on Table XVI of Ref.
9, which are modified in several ways. First of all, one has to
include the corrections to the wave functions on sublattices
9–12, as described in an erratum.9 Second, we translate all
sites by �0,0 ,1 /2�. �This operation has no effect because the
induced change of phase can be absorbed into the order pa-
rameters.� Third, we renumber the sublattices to make their

P−P

q = 1/2
x

q = 1/2/
x

q = 1/2/

T − Tc

c

PARAMAGNET

Γe Γo

M

x

FIG. 2. �Color online� Phase diagram �simplified from Ref. 24�
as a function of P and T for fixed qz near the multicritical point. The
phase with qx=1 /2 exists within a parabolic “tongue” whose apex
is the multicritical point M, where the �e and �o irreps interchange
stability. The compatibility relations we obtain apply in the vicinity
of the multicritical point M.
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positions equal to their counterparts in Table II to within a
lattice constant. The final step was to translate sublattices
through an integer number of lattice constants, as necessary,
in order to bring them back into the unit cell. In this last
operation sublattice n was translated through �n, where �1

= �0, 1̄ ,0�, �4= �1̄ ,0 ,0�, �9=�10=�11= �0,0 ,1�, and �12

= �1̄ , 1̄ ,1�. The result of this operation was to introduce a
multiplicative factor Xn=exp�2�iq ·�n� to all components of
the nth sublattice. Thereby we obtain the results shown in
Table IX.53

Near the multicritical point M the critical spin-wave func-
tion �qx=1/2 �for a fixed value of qz and qx=1 /2� is a linear
combination of �1 times the basis functions of the first col-
umn of Table IX plus �2 times the basis function of the
second column of Table IX. Alternatively, near the multicriti-
cal point M for qx�1 /2 phase, this spin-wave function can
be formed within the space in which the two 1D irreps, �e
and �o, are considered degenerate for the fixed value of qz. In
this limit the wave function �qx�1/2 of the 1D irrep phase is
given by a linear combination of the basis functions associ-
ated with the four-order parameters �s

�� lim�→0 �s���1 /2
−�� ,0 ,qz�, where s is e or o. These basis functions are given
in Tables IV and V. Equating �qx=1/2 and �qx�1/2 gives,
with, as before, �	= �−1,1 ,−1� and �	= �−1,−1,1�,

�1r1	 + �2r2	 = �e
+s	,1 + �o

+u	,1 + �e
−�	s	,1

� + �o
−�	u	,1

� ,

�69�

− �	��1r2	 − �2r1	� = �− i�	��e
+s	,1 + �i�	��o

+u	,1

+ �i�	�	��e
−s	,1

� + �− i�	�	��o
−u	,1

� ,

�70�

�	�	��1r1	 − �2r2	� = �i�	��e
+s	,1

� + �− i�	��o
+u	,1

�

+ �− i�	�	��e
−s	,1 + �i�	�	��o

−u	,1,

�71�

�	��1r2	 + �2r1	� = �e
+s	,1

� + �o
+u	,1

� + �e
−�	s	,1 + �o

−�	u	,1,

�72�

�	z	
���	�1 + �2� = �e

+s	,2 + �o
+u	,2 + �e

−�	s	,2 + �o
−�	u	,2,

�73�

z	
���1 − �	�2� = �i�	��e

+s	,2 + �− i�	��o
+u	,2 + �− i�	��e

−�	s	,2

+ �i�	��o
−�	u	,2, �74�

TABLE IX. Normalized spin functions �i.e. Fourier coefficients� within the unit cell of, e.g., TbMn2O5 for
wave vector � 1

2 ,0 ,q�. Here the rnx, rny, and irnz are real, the zs are complex, and �=exp�2�iqz� where qz is
in rlu’s. The x, y, and z components of each Fourier vector are listed in the corresponding entry. The actual
spin structure is a linear combination, �1 times the first column plus �2 times the second column, where the
�s are complex order parameters and the entries in each column are normalized so that the sum of their
absolute squares is unity.

Spin �1 �2 Spin �1 �2

S�q ,1� r1x

r1y

r1z

r2x

r2y

r2z

S�q ,7� zx

zy

−zz

zx

zy

zz

S�q ,2� r2x

−r2y

r2z

−r1x

r1y

−r1z

S�q ,8� zx

−zy

zz

−zx

zy

zz

S�q ,3� r1x

−r1y

−r1z

−r2x

r2y

r2z

S�q ,9� r5x�
1/2

r5y�
1/2

r5z�
1/2

r6x�
1/2

r6y�
1/2

r6z�
1/2

S�q ,4� −r2x

−r2y

r2z

−r1x

−r1y

r1z

S�q ,10� r6x�
1/2

−r6y�
1/2

r6z�
1/2

−r5x�
1/2

r5y�
1/2

−r5z�
1/2

S�q ,5� zx
�

−zy
�

−zz
�

−zx
�

zy
�

−zz
�

S�q ,11� r5x�
1/2

−r5y�
1/2

−r5z�
1/2

−r6x�
1/2

r6y�
1/2

r6z�
1/2

S�q ,6� zx
�

zy
�

zz
�

zx
�

zy
�

−zz
�

S�q ,12� −r6x�
1/2

−r6y /�1/2

r6z /�1/2

−r5x�
1/2

−r5y�
1/2

r5z�
1/2

EFFECT OF INVERSION SYMMETRY ON THE… PHYSICAL REVIEW B 78, 014407 �2008�

014407-11



z	�− �	�1 + �2� = i�	�e
+s	,2

� + �− i�	��o
+u	,2

� + �− i�	��e
−�	s	,2

�

+ �i�	��o
−�	u	,2

� , �75�

− �	z	��1 + �	�2� = �e
+s	,2

� + �o
+u	,2

� + �e
−�	s	,2

� + �o
−�	u	,2

� ,

�76�

��1r5,	 + �2r6,	��1/2 = �e
+s	,3 + �o

+u	,3 + �e
−��	s	,3

�

+ �o
−��	u	,3

� , �77�

− �	��1r6,	 − �2r5,	��1/2 = + �− i�	��e
+s	,3 + �i�	��o

+u	,3

+ �i�	���	�e
−s	,3

�

+ �− i�	���	�o
−u	,3

� , �78�

�	�	��1r5,	 − �2r6,	��1/2 = ��i�	��e
+s	,3

� + ��− i�	��o
+u	,3

�

+ �− i�	��	�e
−s	,3

+ �i�	��	�o
−u	,3, �79�

�	��1r6,	 + �2r5,	��1/2 = ��e
+s	,3

� + ��o
+u	,3

� + �e
−�	s	,3

+ �o
−�	u	,3, �80�

where �s
�� lim�→0 �s���1 /2−�� ,0 ,qz�, where s is e or o.

B. Symmetry of the multicritical point

From the above equations we expect to obtain a relation
between the order parameters of the phase with qx=1 /2 and
that with qx�1 /2 arbitrarily close to the multicritical point
M. Presumably, giving the values of �e

� and �o
� will deter-

mine the values of �1 and �2, but having the values of �1 and
�2 we cannot expect to determine the four parameters �e

�

and �o
�. Accordingly, we now study the basis functions for

�e and �o and show that they are related in the limit when
qx→1 /2. To see this, we will analyze the behavior of the
inverse susceptibility as a function of Qx, the x component of
the wave vector when the temperature is just above the tem-
perature at which magnetic order appears, and for P close to
the critical value Pc at which the minimum of the inverse
susceptibility as a function of Qx occurs for Qx=1 /2. Note
that the inverse susceptibility has 36 branches, each one cor-
responding to an eigenvalue of the inverse susceptibility ma-
trix. Here we need to consider only the two lowest branches
of the inverse susceptibility. These lowest two eigenvalues
arise out of a 2�2 submatrix, which we now analyze for
Qx=1 /2+kx and P=Pc+y for small kx and y. For y=0 this
submatrix is of the form,

�−1 = �a�T − Tc� + bkx
2 0

0 a�T − Tc� + bkx
2� , �81�

where kx=Qx−1 /2, a and b are constants, and Tc is the tem-
perature at which order first develops. Here and below we
work only to order kx

2. This form is dictated by the fact that
the inverse susceptibility has to be twofold degenerate, have
its minima at kx=0, and the spectrum has to be independent

of the sign of kx �in view of the existence of the symmetry
element mbc�. Thus the two lowest branches in the eigen-
value spectrum of the inverse susceptibility as a function of
Qx are as shown in Fig. 3.

Next consider allowed terms, which are linear in y but
have an unspecified dependence on kx. These will give

�−1 = � + bkx
2 + c�kx�y d�kx�y

d�kx��y  + bkx
2 + e�kx�y

� , �82�

where c�kx� and e�kx� are real and =a�T−Tc�. For the spec-
trum to be the same for both signs of kx, c�kx�+e�kx� must be
an even function of kx. The term in �c�kx�+e�kx�� indepen-
dent of kx leads to an allowed dependence of Tc on y and the
term of order kx

2 leads to an allowed dependence of the co-
efficient b on y, so, in effect, up to order kx

2, we have

�−1 = � + bkx
2 + c�ykx d�kx�y

d�kx��y  + bkx
2 − c�ykx

� , �83�

where now  and b have an allowed, but unimportant, depen-
dence on y. Now consider the dependence of d�kx� on kx.
Suppose that d�kx� were nonzero for kx=0. This would imply
that the minimum in the inverse susceptibility occurred for
kx=0, but that the eigenvalues were not degenerate. This
contradicts group theory. So the generic case is that d�kx�
=
kx+O�kx

3�. Then the two eigenvalues are

�� =  + bkx
2 � ykx

c�2 + 	
	2. �84�

This leads to two parabolic branches of the inverse suscep-
tibility with minima symmetrically displaced away from Qx
=1 /2 by an amount linear in P−Pc, as shown in Fig. 4. As
shown there, the left parabola at Qx=q+ is associated with �e
and is parametrized by the s’s and the right parabola at Qx
=q+ is associated with �o and is parametrized by the u’s. The
corresponding basis functions are given explicitly in Tables
IV and V. However the basis functions for �o and �e at q−

are related, respectively, to �o and �e at q+ according to
Table VI and this is indicated in Fig. 4. These eigenfunctions
of the inverse susceptibility depend on wave vector, of
course. But as P→Pc, the two parabolas come into coinci-
dence with their minimum at Qx=1 /2, and the points gov-
erned by �e and �o on the same parabola approach one
another. Then in this limit, by continuity on the same pa-
rabola we obtain,

u	,1 = �	s	,1
� , u	,2 = �	s	,2, u	,3 = �	�s	,3

� . �85�

It should be remarked, that this multicritical point is not a
Lifshitz point.55 At a Lifshitz point the coefficient of kx

2 in the
inverse susceptibility vanishes. Here, in the generic case, this

x

1/2
Qx

χ −1
(Q )

FIG. 3. �Color online� The two lowest eigenvalues of �−1�Qx�,
which are degenerate for P=Pc.
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coefficient is nonzero, but the coefficient of kx, which here is
allowed because of the double degeneracy, vanishes. Further-
more, the Lifshitz point separates a regime of CM order from
that of IC order. Here CM order �at the paramagnetic phase
boundary� only occurs at a point �where the coefficient of kx
changes sign thereby exchanging the instabilities of the two
1D irreps�.

C. Compatibility equations

Using the relation between the u’s and the s’s, we see that
Eqs. �69�–�80� become

�1r1	 + �2r2	 = �+s	,1 + �−�	s	,1
� , �86�

�1r2	 − �2r1	 = i�+s	,1 − i�	�−s	,1
� , �87�

�1r1	 − �2r2	 = i�	�+s	,1
� − i�−s	,1, �88�

�1r2	 + �2r1	 = �	�+s	,1
� + �−s	,1, �89�

y	
���1 + �	�2� = ��	�+ + �−�s	,2, �90�

y	
���1 − �	�2� = �i�+ − i�	�−�s	,2, �91�

y	��1 − �	�2� = �− i�	�+ + i�−�s	,2
� , �92�

y	��1 + �	�2� = �− �+ − �−�	�s	,2
� , �93�

�1r5,	 + �2r6,	 = �+s	,3�−1/2 + �−�1/2�	s	,3
� , �94�

�1r6,	 − �2r5,	 = i�+s	,3�−1/2 − i�1/2�	�−s	,3
� , �95�

�1r5,	 − �2r6,	 = i�	�+s	,3
� �1/2 − i�−s	,3�−1/2, �96�

�1r6,	 + �2r5,	 = �	�+s	,3
� �1/2 + �−s	,3�−1/2, �97�

where y	=�	z	 and ��=�e
�+�o

�. These equations are
strongly overdetermined. Accordingly, the fact that they have
a solution is evidence that the wave functions, which formed
the input to this calculation are correct. �Indeed, in order to
arrive at a solution, it was necessary to correct an error in the
table of wave functions of Ref. 9.� These equations have the
solution for the wave functions of the 2D irrep phase in
terms of those of the 1D irrep phase as

r1,	 = �ei�/4s	,1 − �	e−i�/4s	,1
� �/2, �98�

r2,	 = �− e−i�/4s	,1 + �	ei�/4s	,1
� �/2, �99�

y	 = �− ei�/4 + �	e−i�/4�s	,2
� , �100�

r5,	 = �ei�/4�−1/2s	,3 − �	e−i�/4�1/2s	,3
� �/2, �101�

r6,	 = �− e−i�/4�−1/2s	,3 + �	ei�/4�1/2s	,3
� �/2. �102�

The order parameters are related by

�+ = �ei�/4�1 − e−i�/4�2�/2,

�− = �− e−i�/4�1 + ei�/4�2�/2. �103�

The inverse transformation is

�1 = �e−i�/4�+ − ei�/4�−�/2,

�2 = �− ei�/4�+ + e−i�/4�−�/2. �104�

A strong check on these results is that the rnx and rny are
real ��x=�y =−1� and rnz is imaginary ��z=1�, all as required
by the symmetry analysis of the CM phase.9

These results show how the order parameters of the 2D
irrep are related to the order parameters of the 1D irreps. One
should also note that by continuity, if the IC phase has a
spontaneous polarization as qz→1 /4, the CM phase should
also have one and vice versa. This is ensured by the fact that

	�1	2 − 	�2	2 = i���e
+ + �o

−���e
− + �o

+�� − ��e
+ + �o

−����e
− + �o

+�� .

�105�

Now we only keep terms that conserve wave vector when we
go away from qx=1 /2, in which case,

	�1	2 − 	�2	2 = i��e
+�o

+� − �o
+�e

+� + �e
−��o

− − �o
−��e

−� .

�106�

Thus the ME interaction of Eq. �53� goes smoothly into
the ME interaction in the CM state,9,24,37

Vint = r�	�1	2 − 	�2	2�Pb. �107�

VI. CONCLUSION

We have performed a representation analysis of the mag-
netic order for the IC phase of the RMn2O5 series by includ-

*

δ zeσ

(1/2− ,0,q )δ z

(s , s , s )
1 2 3

q+ q−
xQ

eσ δ z(−1/2+ ,0,q )

( s , s , s )
1

ρ * *
2 3

ρ ρ Λ

1 2
(u , u , u )

3

oσ

1/2

χ−1
(Q )x

δ z(−1/2+ ,0,q )oσ

1
ρ

2 3
ρ ρ Λ( u , u , u )*

(1/2− ,0,q )

FIG. 4. �Color online� The two lowest branches of eigenvalues
of �−1�qx� with their wave functions indicated. Note that the labels
e and o refer to the eigenvalues rather than the branch of the spec-
trum. We assume that the wave functions at q+ for irreps �e and �o

are given in terms of sn and un, respectively, as listed in Tables IV
and V, respectively. Here sn�s	,n, un�u	,n, and ���	. Then the
wave functions at q=q− are obtained in terms of those at q=q+

according to Table VI. In general, the o and e wave functions are
unrelated. However, as P→Pc, q+−q−→0, and the two parabolas
come into coincidence. In this situation the points corresponding to
�e and �o come into coincidence. Therefore by continuity on either
the right-hand or the left-hand parabola the �o and �e wave function
on the same parabola become equal, leading to Eq. �85�.
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ing inversion symmetry, thereby reducing by about half the
number of degrees of freedom allowed for magnetic order-
ing. Our results emphasize that a full inclusion of inversion
symmetry is necessary to determine the magnetic structure
and associated order parameters, not only in multiferroics,
but also in a wide range of magnetic materials. We have also
determined the physically important order parameters and
have analyzed the transformation properties, which they in-
herit from the wave functions. Using these symmetry prop-
erties, we have analyzed the magnetoelectric interaction re-
sponsible for the simultaneous magnetic and dielectric phase
transitions. The lowest-order magnetoelectric interaction,
which is bilinear in the magnetic order parameters, explains
the observed direction of the spontaneous polarization. We
have shown that higher-order and Umklapp magnetoelectric
interactions �which are quartic in the spin variables� can in-

duce nonzero values for all components of the spontaneous
polarization. However, since the order parameters are small
in the relevant phases and since microscopic mechanisms
tend to involve terms quadratic in the spin variables, these
anomalous components to the spontaneous polarization may
be very difficult to observe. We have also explicitly obtained
the compatibility relations for the transition between the IC
phase and the CM phase �or more generally the phase where
the x component of wave vector is locked to its CM value�.
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